Math 254B Lecture 18 Notes

Daniel Raban

May 8, 2019

1 Fractals and Fractal Dimension

1.1 Examples of fractals

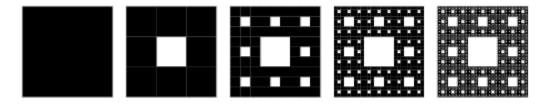
A fractal 1 is some kind of metric space with no smooth structure. Here are some examples of fractals. 2

Example 1.1. The middle- α Cantor set is a fractal:

Alternatively, if we have $(\alpha_1, \alpha_2, ...)$, we can form the **middle**- α_j **Cantor set** by taking away the middle α_j from each remaining interval at step j.

Example 1.2. The von Koch curve is another fractal:

Example 1.3. The Sierpiński carpet is a fractal:



¹People have generally agreed that we should not have a strict definition of fractal.

 $^{^2\}mathrm{Images}$ taken from Wolfram mathworld.

Example 1.4. Here is a fractal called **Cantor dust**:

		:: :: :: ::	

These are all special non-smooth spaces; all of these are generated in some recursive way.

1.2 Box-counting dimension

How do we talk about sizes of fractals?

Definition 1.1. Let (X, ρ) be a metric space, and let $A \subseteq X$. Let (X, ρ) The upper box-counting dimension of A is

$$\overline{\dim}_B(A) := \limsup_{\delta \to 0} \frac{\log(\operatorname{cov}_{\delta}(A))}{\log(\delta^{-1})}.$$

The lower box-counting dimension of A is

$$\underline{\dim}_B(A) := \liminf_{\delta \to 0} \frac{\log(\operatorname{cov}_\delta(A))}{\log(\delta^{-1})}.$$

If these are equal, we call them the **box-counting dimension** $\dim_B(A)$.

Lemma 1.1. We get the same value if we use

- 1. Closed balls instead of open,
- 2. $\operatorname{cov}_{\delta}$,
- 3. pack_{δ},
- 4. If $X = \mathbb{R}^n$, use cubes and let δ be the diameter of the cubes,
- 5. In $X = \mathbb{R}^n$, we also have

$$\underline{\dim}_B(A) = \liminf_{n \to \infty} \frac{\log(N(A, b^n))}{n \log(b)},$$

where $N(A, b^n)$ is the number of b-adic cubes (with vertices in $(b^{-n}\mathbb{Z})^d$) which intersect A.

Proof. The real reason is that

$$\overline{\dim}_B(A) = \limsup_{j \to \infty} \frac{\log(\operatorname{cov}_{\delta_j}(A))}{\log(\delta_j^{-1})}$$

whenever $\delta_j \downarrow 0$, provided $\sup_j \delta_j / \delta_{j+1} = C < \infty$. If $\delta_{j+1} \leq \delta < \delta_j$, then

$$\frac{\log(\operatorname{cov}_{\delta}(A))}{\log(\delta^{-1})} \ge \frac{\log(\operatorname{cov}_{\delta}(A))}{\log(\delta^{-1})} \cdot \frac{\log(\delta^{-1})}{\log(\delta^{-1}) + \log(C)}$$

The same holds for the lower box-counting dimension.

(1) \iff (4): observe that

$$3^{-d}N(A, b^{-n}) \le \operatorname{cov}_{b^{-n}}(A) \le 3^{d}N(A, b^{n}).$$

Example 1.5. Let C_{α} be the middle- α Cantor set. For every *i*, we can cover C_{α} using 2^{i} intervals of length $\left(\frac{1-\alpha}{2}\right)^{i}$. So we get

$$\overline{\dim}_B(C_\alpha) \le \frac{\log(2)}{\log(2/(1-\alpha))}$$

You can show that this is actually the box-covering dimension.

For $C_{\langle \alpha_j \rangle}$, we will be covering with intervals of length $(1 - \alpha_1)(1 - \alpha_2) \cdots (1 - \alpha_i)/2^i$. So we get

$$\overline{\dim}_B(C_{\langle \alpha_j \rangle}) = \limsup_{i \to \infty} \frac{\log(2)}{\frac{1}{i} \sum_{j=1}^i (\log(2) - \log(1 - \alpha_j))},$$
$$\underline{\dim}_B(C_{\langle \alpha_j \rangle}) = \liminf_{i \to \infty} \frac{\log(2)}{\frac{1}{i} \sum_{j=1}^i (\log(2) - \log(1 - \alpha_j))}.$$

Definition 1.2. If $f : (X, \rho_X) \to (Y, \rho_Y)$ and $0 < \alpha \le 1$, then f is α -Hölder if there is a $C < \infty$ such that

$$\rho_Y(f(x), f(y)) \le C\rho(x, y)^{\alpha}.$$

Lemma 1.2. If f is α -Hölder, then

$$\overline{\dim}_B(f(A)) \le \frac{\overline{\dim}_B(A)}{\alpha},$$
$$\underline{\dim}_B(f(A)) \le \underline{\dim}_B(A).$$

Proof. If we cover A by $B(x_1, \delta), \ldots, B(x_n, \delta)$; the $nf(A) \subseteq \bigcup_i B(f(x_i), C\delta^{\alpha})$.

Lemma 1.3. $\overline{\dim}_B(A) = \overline{\dim}_b(\overline{A}).$

Corollary 1.1. $\dim_B(\mathbb{Q} \cap [0,1]) = 1.$

This does not quite agree with what we think should be small, so we introduce a different notion.

1.3 Hausdorff dimension

Definition 1.3. Let $A \subseteq X$, and $0 \le \alpha < \infty$. Then the α -dimensional Hausdorff content³ is

$$\mathcal{H}^{\alpha}_{\infty}(A) := \inf \left\{ \sum_{i} \operatorname{diam}(E_{i})^{\alpha} : A \subseteq \bigcup_{i} E_{i} \right\}.$$

Lemma 1.4. If $0 < \alpha < \beta$ and $\mathcal{H}^{\alpha}_{\infty}(A) = 0$, then $\mathcal{H}^{\beta}_{\infty}(A) = 0$.

Proof. Assume that for every $\varepsilon > 0$, there are E_i such that $A \subseteq \bigcup_i E_i$ and $\sum_i \operatorname{diam}(E_i)^{|a|} alpha) < \varepsilon$. Then $\operatorname{diam}(E_i) \leq \varepsilon^{1/\alpha}$ for all *i*. Then

$$\sum_{i} \operatorname{diam}(E_{i})^{(\beta-\alpha)+\alpha} \leq \varepsilon^{(\beta-\alpha)/\alpha} \sum_{i} \operatorname{diam}(E_{i})^{\alpha} \leq \varepsilon^{(\beta-\alpha)/\alpha+1}.$$

Definition 1.4. The **Hausdorff dimension** is $\dim(A) = \dim_H(A) = \inf\{\alpha > 0 : \mathcal{H}^{\alpha}_{\alpha}(A)\}.$

Proposition 1.1. We get the same notion of dimension using open/closed balls, b-adic cubes, etc.

Lemma 1.5. $\dim(A) \leq \underline{\dim}_B(A)$.

Proof. For any $\alpha > \underline{\dim}_B(A)$. there exist $\delta_1 > \delta_2 > \cdots \to 0$ such that $\operatorname{cov}_{\delta_j}(A) \leq C\delta_j^{-\alpha}$. If $B(x_1, \delta_j), \ldots, B(x_N, \delta_j)$ are these balls, we get for any $\alpha' > \alpha$ that

$$B_{\infty}^{\alpha'}(A) \le \sum_{n=1}^{N} (2\delta_j)^{\alpha'} \le 2^{\alpha'} C \delta_j^{\alpha'} \delta_j^{-\alpha} = O(1) \delta_j^{\alpha'-\alpha} \to 0.$$

So we have that

$$\dim \leq \underline{\dim}_B \leq \overline{\dim}_B.$$

Definition 1.5. A is **exact dimensional** if these are all equal.

Definition 1.6. Define $\mathcal{H}^{\alpha}_{\delta}(A) := \inf \{ \sum_{i} \operatorname{diam}(E_{i})^{\alpha} : A \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \}$. The α dimensional Hausdorff measure is

$$m_{\alpha}(A) := \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(A).$$

³One way to think about this is as an infinite analogue of cov'