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1 Fractals and Fractal Dimension

1.1 Examples of fractals

A fractal! is some kind of metric space with no smooth structure. Here are some examples

of fractals.?

Example 1.1. The middle-a Cantor set is a fractal:

Alternatively, if we have (a1, a2, ...), we can form the middle-«; Cantor set by taking
away the middle o; from each remaining interval at step j.

Example 1.2. The von Koch curve is another fractal:

Example 1.3. The Sierpinski carpet is a fractal:

1People have generally agreed that we should not have a strict definition of fractal.
2Images taken from Wolfram mathworld.



Example 1.4. Here is a fractal called Cantor dust:

These are all special non-smooth spaces; all of these are generated in some recursive
way.

1.2 Box-counting dimension

How do we talk about sizes of fractals?

Definition 1.1. Let (X, p) be a metric space, and let A C X. Let (X, p) The upper
box-counting dimension of A is

S . log(covs(A))
d A) =1 _—
4) = s

The lower box-counting dimension of A is

. .. .log(covs(A))
dimp(A) .-hgn_)lglf og0-1) "

If these are equal, we call them the box-counting dimension dimpg(A).
Lemma 1.1. We get the same value if we use
1. Closed balls instead of open,
covg,
packs,

If X = R", use cubes and let § be the diameter of the cubes,

AR

In X = R", we also have

. . log(N(A b))
dimps(A) = Hminf =500

)

where N(A,b") is the number of b-adic cubes (with vertices in (b""Z)%) which inter-
sect A.



Proof. The real reason is that

— 1 (A
dimp(A) = limsup Og(L&if))
j—roo IOg(dj )
whenever d; | 0, provided sup; 6;/d;+1 = C < oo. If §;11 < 6 < Jj, then
log(covs(A)) S log(covs(A)) log(6~1)
log(6=Y) = log(6=1)  log(d—1) +log(C)

The same holds for the lower box-counting dimension.
(1) <= (4): observe that

37N (A,b™) < covy-n(A) < 3TN (A, b). O

Example 1.5. Let C, be the middle-a Cantor set. For every i, we can cover C, using 21
intervals of length (1770‘)1 So we get

- log(2)
d Cp) < — 0,
8 (Ce) = Log(2/(1 — @)
You can show that this is actually the box-covering dimension.
For C\,,), we will be covering with intervals of length (1 —a1)(1 —ag) -+ (1 — a;) /2%
So we get

log(2
dimp(Ca;y) = limsup ——; 08(2) ,
PP TS (log(2) — log(1 —ay)

log(2)

MB(C@;‘)) hg})gf % Z;Zl(log@) —log(1 — ogj)'
Definition 1.2. If f: (X, px) = (Y, py) and 0 < o < 1, then f is a-Holder if there is a
C < oo such that
py (f(x), f(y)) < Cp(z,y)".

Lemma 1.2. If f is a-Holder, then

dimp(f(4)) < A

dimp(A)
o
Proof. 1f we cover A by B(x1,6),...,B(xy,0)j the nf(A) C U, B(f(z;),Cé%). O

dimp(f(A)) <

Lemma 1.3. dimp(A) = dim,(4).

Corollary 1.1. dimp(QnN[0,1]) = 1.

This does not quite agree with what we think should be small, so we introduce a
different notion.



1.3 Hausdorff dimension

Definition 1.3. Let A C X, and 0 < o < oo. Then the a-dimensional Hausdorff
content?® is
H (A) := inf {Z diam(E;)® : A C UE} :

Lemma 1.4. If0 < o < 8 and H%(A) = 0, then H3,(A) = 0.

Proof. Assume that for every & > 0, there are E; such that A C |J; E; and ", diam(E;) alpha) <
e. Then diam(E;) < !/ for all 5. Then

Zdiam(Ei)(B*a%Fa < E(B*Q)/a Zdlam(E,)a < 8(,37a)/a+1' O

Definition 1.4. The Hausdorff dimension is dim(A) = dimg(A4) = inf{a > 0: HE(A)}.

Proposition 1.1. We get the same notion of dimension using open/closed balls, b-adic
cubes, etc.

Lemma 1.5. dim(A) < dimpg(A4).

Proof. For any a > dimp(A). there exist §; > d2 > -+ — 0 such that covs;(4) < C§;.
If B(x1,95),...,B(xnN,0;) are these balls, we get for any o/ > « that

N
BE(A) < (26;) <27C6%67% = 0(1)55 = 0. O
n=1

So we have that
dim < dimg < dimpg.

Definition 1.5. A is exact dimensional if these are all equal.

Definition 1.6. Define H§(A) := inf {>, diam(FE;)* : A C |, £, diam(E;) < §}. The -
dimensional Hausdorff measure is

ma(A) := lim Hg (4).

30ne way to think about this is as an infinite analogue of cov’
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